Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
СКЛАДУ НМТ — математика
Завдання для підготовки
1.  
i

Визна­чте най­мен­ше ціле зна­чен­ня a, за якого один із коренів рівнян­ня

 ло­га­рифм по ос­но­ва­нию 2 в квад­ра­те x минус левая круг­лая скоб­ка a минус 1 пра­вая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 x минус a = 0

на­ле­жить проміжку (30; 100).

 

Відповідь: ,.

2.  
i

Опре­де­ли­те, при каких зна­че­ни­ях па­ра­мет­ра a, a боль­ше 3, такие, что урав­не­ние 4 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка минус левая круг­лая скоб­ка a плюс 3 пра­вая круг­лая скоб­ка 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс 4a минус 4=0 имеет ровно один ко­рень.

 

Відповідь: ,.

3.  
i

Опре­де­ли­те, при каких зна­че­ни­ях па­ра­мет­ра a, a мень­ше 2, такие, что урав­не­ние 64 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс левая круг­лая скоб­ка a минус 4 пра­вая круг­лая скоб­ка 8 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс 4 минус 2a=0 имеет ровно один ко­рень.

 

Відповідь: ,.

4.  
i

Опре­де­ли­те, при каких зна­че­ни­ях па­ра­мет­ра a, a боль­ше или равно 1, такие, что урав­не­ние 4 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка минус левая круг­лая скоб­ка 5a минус 3 пра­вая круг­лая скоб­ка 2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс 4a в квад­ра­те минус 3a=0 имеет ровно один ко­рень.

 

Відповідь: ,.

5.  
i

Опре­де­ли­те, при каких зна­че­ни­ях па­ра­мет­ра a,  дробь: чис­ли­тель: 1, зна­ме­на­тель: 3 конец дроби мень­ше a мень­ше или равно 6, такие, что урав­не­ние 16 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка минус левая круг­лая скоб­ка 4a минус 1 пра­вая круг­лая скоб­ка 4 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс 3a в квад­ра­те минус a=0 имеет ровно один ко­рень.

 

Відповідь: ,.

6.  
i

Опре­де­ли­те, при каких зна­че­ни­ях па­ра­мет­ра a, a мень­ше минус 12, такие, что урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та в квад­ра­те плюс 6x плюс 8= ко­рень из: на­ча­ло ар­гу­мен­та: a минус 3x конец ар­гу­мен­та имеет на  левая круг­лая скоб­ка минус бес­ко­неч­ность ;0 пра­вая круг­лая скоб­ка един­ствен­ное ре­ше­ние.

 

Відповідь: ,.

7.  
i

Опре­де­ли­те, при каких зна­че­ни­ях па­ра­мет­ра a, a боль­ше 1, такие, что урав­не­ние  ко­рень из: на­ча­ло ар­гу­мен­та: x плюс 1 конец ар­гу­мен­та =x плюс a имеет ровно один ко­рень.

 

Відповідь: ,.

8.  
i

Опре­де­ли­те, при каких зна­че­ни­ях па­ра­мет­ра a, 0 мень­ше a мень­ше 2, такие, что урав­не­ние 27 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс левая круг­лая скоб­ка a минус 2 пра­вая круг­лая скоб­ка умно­жить на 9 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка минус a умно­жить на 3 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка плюс 2a минус a в квад­ра­те =0 имеет ровно один ко­рень.

 

Відповідь: ,.

9.  
i

При каких зна­че­ни­ях па­ра­мет­ра не­ра­вен­ство |x минус 1| мень­ше или равно минус a в квад­ра­те имеет един­ствен­ное ре­ше­ние.

 

Відповідь: ,.

10.  
i

При каких зна­че­ни­ях па­ра­мет­ра не­ра­вен­ство |x| плюс a в квад­ра­те |x плюс 2| мень­ше или равно 0. имеет един­ствен­ное ре­ше­ние.

 

Відповідь: ,.

11.  
i

Опре­де­ли­те наи­мень­шее целое зна­че­ние a, при ко­то­ром не­ра­вен­ство 2x плюс a боль­ше 0 яв­ля­ет­ся след­стви­ем не­ра­вен­ства x плюс 1 минус 3a боль­ше 0.

 

Відповідь: ,.

12.  
i

Опре­де­ли­те наи­боль­шее целое зна­че­ние a, при ко­то­ром из не­ра­вен­ства x плюс 2a минус 3 боль­ше 0 сле­ду­ет не­ра­вен­ство 2x минус a боль­ше 0.

 

Відповідь: ,.

13.  
i

Опре­де­ли­те наи­боль­шее целое зна­че­ние a, при ко­то­ром урав­не­ния x в квад­ра­те минус a=0 и  ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та минус a=0 рав­но­силь­ны.

 

Відповідь: ,.

14.  
i

Опре­де­ли­те, при каких зна­че­ни­ях па­ра­мет­ра рав­но­силь­ны урав­не­ния  левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та минус 1 пра­вая круг­лая скоб­ка \log _3 левая круг­лая скоб­ка 1 минус a пра­вая круг­лая скоб­ка =0 и a ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та =0.

 

Відповідь: ,.

15.  
i

За­да­но не­ра­вен­ство

x в квад­ра­те плюс 4x плюс 6a|x плюс 2| плюс 9a в квад­ра­те \leqslant0,

где x — пе­ре­мен­ная, a — па­ра­метр. Най­ди­те наи­боль­шее целое зна­че­ние a, при ко­то­ром не­ра­вен­ство имеет не более од­но­го ре­ше­ния.

 

Відповідь: ,.

16.  
i

Визна­чте найбільше ціле зна­чен­ня a, за якого один із коренів рівнян­ня

 ло­га­рифм по ос­но­ва­нию 2 в квад­ра­те x минус левая круг­лая скоб­ка a плюс 1 пра­вая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию 2 x плюс a = 0

на­ле­жить проміжку (40; 130).

 

Відповідь: ,.

17.  
i

За­да­но не­ра­вен­ство x в квад­ра­те плюс 2|x минус a| боль­ше или равно a в квад­ра­те , где x — пе­ре­мен­ная, a — па­ра­метр. Най­ди­те наи­мень­шее зна­че­ние па­ра­мет­ра a, при ко­то­ром не­ра­вен­ство спра­вед­ли­во для всех дей­стви­тель­ных x.

 

Відповідь: ,.

18.  
i

За­да­но нерівність 2 плюс ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те плюс ax конец ар­гу­мен­та боль­ше x, де x – змінна, a – па­ра­метр. Най­ди­те наи­мень­шее целое зна­че­ние па­ра­мет­ра a, при ко­то­ром мно­же­ство ре­ше­ний не­ра­вен­ства со­дер­жит от­ре­зок [4; 7].

 

Відповідь: ,.

19.  
i

Визна­чте най­мен­ше зна­чен­ня а, за якого має корені рівнян­ня  синус левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка = 2a в квад­ра­те плюс 5a минус 6.

20.  
i

Визна­чте наи­бо­лее зна­чен­ня а, за якого має корені рівнян­ня  ко­си­нус левая круг­лая скоб­ка x минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 2 конец дроби пра­вая круг­лая скоб­ка = a в квад­ра­те минус 5a плюс 5.

 

Відповідь: ,.

21.  
i

Визна­чте най­мен­ше зна­чен­ня а, за якого має корені рівнян­ня  синус левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка = a в квад­ра­те минус 7a плюс 11.

 

Відповідь: ,.

22.  
i

Визна­чте наи­бо­лее зна­чен­ня а, за якого має корені рівнян­ня  синус левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 6 конец дроби пра­вая круг­лая скоб­ка = a в квад­ра­те минус 9a плюс 19.

 

Відповідь: ,.

23.  
i

Визна­чте наи­бо­лее целое зна­чен­ня а, за якого має корені рівнян­ня  ко­си­нус левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 3 конец дроби пра­вая круг­лая скоб­ка = a в квад­ра­те минус a минус 7.

 

Відповідь: ,.

24.  
i

Визна­чте що­най­мен­ше целое зна­чен­ня а, за якого має корені рівнян­ня  ко­си­нус левая круг­лая скоб­ка x минус дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка = a в квад­ра­те минус 11a плюс 29.

 

Відповідь: ,.

25.  
i

Знайдіть усі зна­чен­ня a, за яких рівнян­ня  дробь: чис­ли­тель: x в квад­ра­те минус ax плюс 4, зна­ме­на­тель: x минус 5 конец дроби = 0 має лише один корінь. Якщо таких зна­чень кілька, то запишіть у відповіді їхній до­бу­ток.

26.  
i

Визна­чте кількість цілих зна­чень a, за яких корені x1 та x2 квад­рат­но­го рівнян­ня  x в квад­ра­те минус 4ax плюс 4a в квад­ра­те минус 25 = 0 за­до­воль­ня­ють умову  x_1 мень­ше 1 мень­ше x_2.

 

Відповідь: ,.

27.  
i

Визна­чте до­дат­не зна­чен­ня m, за якого один із коренів рівнян­ня  x в квад­ра­те минус левая круг­лая скоб­ка 2m минус 4 пра­вая круг­лая скоб­ка x плюс 16 = 0 на 6 бiльший вiд iншого.

 

Відповідь: ,.