Вариант № 8291

При выполнении заданий с кратким ответом отметьте верный ответ или впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 1:00:00
1
Тип 1 № 1418
i

У ко­робці ле­жать тістеч­ка двох видів: бісквіти та бізе. Яке з на­ве­де­них чисел може бути кількістю тісте­чок у ко­робці, якщо бісквітів у 5 разів більше, ніж бізе?



2
Тип 2 № 2538
i

У бу­дин­ку пе­ре­бу­ва­ють шість осіб, се­редній вік яких ста­но­вить 23 роки. Після того як з дому вий­ш­ла одна лю­ди­на, се­редній вік тих, хто за­ли­ши­вся, став 24 роки. Скільки років людині, яка вий­ш­ла з дому?



3
Тип 3 № 2558
i

Що є бічною гран­ню пра­виль­ної піраміди?



4

5
Тип 5 № 518
i

Знайдіть гра­дус­ний захід кута, суміжного з кутом, радіаль­ний захід якого дорівнює дробь: чис­ли­тель: 17 Пи , зна­ме­на­тель: 36 конец дроби .



6
Тип 6 № 264
i

Розв’яжіть рівнян­ня  3x плюс 5 плюс левая круг­лая скоб­ка x плюс 5 пра­вая круг­лая скоб­ка = левая круг­лая скоб­ка 1 минус x пра­вая круг­лая скоб­ка плюс 4.



7
Тип 7 № 1460
i

На ри­сун­ку зоб­ра­же­но графік функції y=f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка , визна­че­ної на відрізку [−7; 7]. Ко­ри­сту­ю­чись ри­сун­ком, знайдіть f(2).



8
Тип 8 № 556
i

Спростіть вираз  дробь: чис­ли­тель: x в квад­ра­те минус 8x плюс 16, зна­ме­на­тель: x в квад­ра­те минус 4x конец дроби : дробь: чис­ли­тель: x в квад­ра­те минус 16, зна­ме­на­тель: x в кубе конец дроби .



9
Тип 9 № 1489
i

Які з на­ве­де­них твер­джень є пра­виль­ни­ми?

I. Діаго­налі будь-якого па­ра­ле­ло­гра­ма рівні.

II. Про­ти­лежні кути будь-якого па­ра­ле­ло­гра­ма рівні.

III. Відстані від точки пе­ре­ти­ну діаго­на­лей будь-якого па­ра­ле­ло­гра­ма до його про­ти­леж­них сторін рівні.



10
Тип 10 № 568
i

Ско­ротіть дріб  дробь: чис­ли­тель: x в квад­ра­те минус 36, зна­ме­на­тель: 5x в квад­ра­те минус 29x минус 6 конец дроби .



11
Тип 11 № 1463
i

Розв’яжіть си­сте­му нерівно­стей:  си­сте­ма вы­ра­же­ний 2x в квад­ра­те минус 7x плюс 5 мень­ше или равно 0,2 минус x боль­ше 0. конец си­сте­мы .



12
Тип 12 № 2262
i

Сто­ро­на ос­но­ви пра­виль­ної чо­ти­ри­кут­ної піраміди дорівнює 6 см, апо­фе­ма — 7 см. Визна­чте площу повної по­верхні цієї піраміди.



13
Тип 13 № 452
i

Знайдіть корінь рівнян­ня  2 в сте­пе­ни левая круг­лая скоб­ка ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 8 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 5x минус 3 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка = 4.



14
Тип 14 № 2222
i

Бісек­три­са кута A пря­мо­кут­ни­ка ABCD пе­ре­ти­нає сто­ро­ну ВС в точці K. Об­числіть площу чо­ти­ри­кут­ни­ка AKCD, якщо BK=KC=8 см.



15

Яка з на­ве­де­них функцiй є первiсною для функцiї f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = x в сте­пе­ни левая круг­лая скоб­ка минус 4 пра­вая круг­лая скоб­ка ?



16

Увідповідніть функцію (1–3) та її вла­стивість (А–Д).

Функцiя

1f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 0,2 в сте­пе­ни левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка

2f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = 2 синус x

3f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = ко­рень из: на­ча­ло ар­гу­мен­та: |x| конец ар­гу­мен­та

Вла­стивість функції

А функція парна

Б об­ластю зна­чень функції є мно­жи­на [−1; 1].

В об­ластю зна­чень функції є проміжок [−2; 2].

Г функція спадає на проміжку  левая круг­лая скоб­ка минус бес­ко­неч­ность ; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка

Д графік функції має лише дві точки пе­ре­ти­ну з осями ко­ор­ди­нат

А
Б
В
Г
Д

1

2

3


17

Уста­новіть відповідність між ви­ра­зом (1−3) та то­тож­но рівним йому ви­ра­зом (А−Д), якщо а — довільне від’ємне число.

Вираз

1.    a0

2.     |a| плюс a

3.    a ло­га­рифм по ос­но­ва­нию 2 2 в сте­пе­ни a

То­тож­но рівний вираз

А    0

Б    2a

В    a2

Г    1

Д    −2a

А
Б
В
Г
Д

1

2

3


18
Тип 18 № 1528
i

На кож­но­му з ри­сунків зоб­ра­же­но коло з цен­тром у точці О та хорду АВ. Кут ACB і ADB — впи­сані кути, які спи­ра­ють­ся на хорду АВ. Уста­новіть відповідність між впи­са­ним кутом АСВ, зоб­ра­же­ним на ри­сун­ках (1−3), та його гра­дус­ною мірою (А−Д).

Ри­сун­ки

1.

2.

3.

Гра­дус­на мiра впи­са­но­го кута ACB

А    100°

Б    90°

В    80°

Г    60°

Д    50°

А
Б
В
Г
Д

1

2

3


19
Тип 19 № 629
i

Ви­пи­са­но кілька послідов­них членів гео­мет­рич­ної про­гресії: …; 150; x ; 6; 1,2; … Знайдіть член про­гресії, по­зна­че­ний літерою x.

 

Відповідь: ,.



20
Тип 20 № 2612
i

Учні двох класів (у пер­шо­му  — 20 учнів, у дру­го­му  — 25 учнів) оби­ра­ють по од­но­му пред­став­ни­ку з кож­но­го класу для участі у заході. Знайдіть ймовірність того, що учас­ни­ка­ми за­хо­ду буде обра­но ста­ро­сти цих класів. Вва­жай­те, що всі учні кож­но­го класу мають од­на­кові шанси стати учас­ни­ка­ми за­хо­ду, і кожен клас має од­но­го ста­ро­сту.

 

Відповідь: ,.



21
Тип 21 № 2633
i

Длины век­то­ров \vec a и \vec b равны 2 ко­рень из 3 и 5, а угол между ними равен 150°. Най­ди­те ска­ляр­ное про­из­ве­де­ние \vec a умно­жить на \vec b.

 

Відповідь: ,.



22
Тип 22 № 2444
i

Опре­де­ли­те, при каких зна­че­ни­ях па­ра­мет­ра рав­но­силь­ны урав­не­ния  левая круг­лая скоб­ка ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та минус 1 пра­вая круг­лая скоб­ка \log _3 левая круг­лая скоб­ка 1 минус a пра­вая круг­лая скоб­ка =0 и a ко­рень из: на­ча­ло ар­гу­мен­та: x конец ар­гу­мен­та =0.

 

Відповідь: ,.


Завершить работу, свериться с ответами, увидеть решения.