Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
СКЛАДУ НМТ — математика
Вариант № 8070
1.  
i

На складі є ко­роб­ки з руч­ка­ми двох ко­льорів: з чор­ни­ми та синіми. Ко­ро­бок з чор­ни­ми руч­ка­ми 4, з синіми — 11. Скільки всьо­го ручок на складі, якщо чор­них ручок 640, ко­роб­ки од­на­кові та в кожній ко­робці зна­хо­дять­ся ручки лише од­но­го ко­льо­ру?

А) 2000
Б) 2190
В) 1760
Г) 2400
Д) 2450
2.  
i

Се­реднє ариф­ме­тич­не п'яти чисел дорівнює 300. Одне з цих чисел дорівнює 500. Знайдіть се­реднє ариф­ме­тич­не чо­ти­рьох чисел, що за­ли­ши­ли­ся.

А) 300
Б) 250
В) 275
Г) 325
Д) 200
3.  
i

Що є осьо­вим пе­ре­ти­ном ко­ну­са?

А) квад­рат
Б) відрізок
В) пря­мо­кут­ник
Г) рівно­бед­ре­ний три­кут­ник
Д) тра­пеція
4.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 11 умно­жить на 2 в квад­ра­те конец ар­гу­мен­та умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: 11 умно­жить на 3 в сте­пе­ни 4 конец ар­гу­мен­та .

А) 88
Б) 96
В) 156
Г) 172
Д) 198
5.  
i

На ма­люн­ку дві прямі пе­ре­ти­на­ють­ся у точці О. Якщо  \angle AOC плюс \angle BOC плюс \angle BOD = 310 гра­ду­сов, то кут BOC дорівнює:

А) 130°
Б) 80°
В) 30°
Г) 50°
Д) 20°
6.  
i

Розв’яжіть рівнян­ня  дробь: чис­ли­тель: 5x плюс 4, зна­ме­на­тель: 2 конец дроби плюс 3= дробь: чис­ли­тель: 9x, зна­ме­на­тель: 4 конец дроби .

А) −24
Б) −20
В) 16
Г) −10
Д) −21
7.  
i

Знайдіть відстань від точки A з ко­ор­ди­на­та­ми (6; 8) до по­чат­ку ко­ор­ди­нат.

А) 6
Б) 10
В) 8
Г) 0
Д) 5
8.  
i

Спростіть вираз  дробь: чис­ли­тель: x в квад­ра­те минус 20x плюс 100, зна­ме­на­тель: x в квад­ра­те минус 10x конец дроби : дробь: чис­ли­тель: x в квад­ра­те минус 100, зна­ме­на­тель: x в кубе конец дроби .

А)  дробь: чис­ли­тель: x в квад­ра­те , зна­ме­на­тель: x минус 10 конец дроби
Б)  дробь: чис­ли­тель: x минус 10, зна­ме­на­тель: x плюс 10 конец дроби
В)  дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 10 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: x в сте­пе­ни 4 конец дроби
Г)  дробь: чис­ли­тель: x в квад­ра­те , зна­ме­на­тель: x плюс 10 конец дроби
Д)  дробь: чис­ли­тель: x в квад­ра­те , зна­ме­на­тель: 10 минус x конец дроби
9.  
i

Які з на­ве­де­них твер­джень є пра­виль­ни­ми?

I. Нав­ко­ло будь-якого ромба можна опи­са­ти коло.

II. Діаго­налі будь-якого ромба взаємно пер­пен­ди­ку­лярні.

III. У будь-якому ромбі всі сто­ро­ни рівні.

А) лише I та II
Б) лише I та III
В) лише II
Г) лише II та III
Д) I, II та III
10.  
i

Ско­ротіть дріб  дробь: чис­ли­тель: x в квад­ра­те минус 16, зна­ме­на­тель: 6x в квад­ра­те минус 23x минус 4 конец дроби .

А)  дробь: чис­ли­тель: x минус 4, зна­ме­на­тель: 6x плюс 1 конец дроби
Б)  дробь: чис­ли­тель: x плюс 4, зна­ме­на­тель: 6x плюс 1 конец дроби
В)  дробь: чис­ли­тель: x минус 4, зна­ме­на­тель: 6x минус 1 конец дроби
Г)  дробь: чис­ли­тель: x плюс 4, зна­ме­на­тель: x плюс 1 конец дроби
Д)  дробь: чис­ли­тель: x плюс 4, зна­ме­на­тель: 6x минус 1 конец дроби
11.  
i

Вкажіть номер ма­люн­ка, на якому по­ка­за­но розв’язок си­сте­ми нерівно­стей  си­сте­ма вы­ра­же­ний x\leqslant минус 1,2,1 минус 2x мень­ше 7. конец си­сте­мы .

1)

2)

3)

4)

5)

А) 1
Б) 2
В) 3
Г) 4
Д) 5
12.  
i

Радіус ос­но­ви ко­ну­са дорівнює 3, ви­со­та дорівнює 4. Знайдіть площу повної по­верхні ко­ну­са, поділену на  Пи .

А) 12
Б) 36
В) 24
Г) 15
Д) 48
13.  
i

Знайдіть корінь рівнян­ня  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 8 пра­вая круг­лая скоб­ка 2 в сте­пе­ни левая круг­лая скоб­ка 8x минус 4 пра­вая круг­лая скоб­ка = 4.

А)  левая квад­рат­ная скоб­ка минус 2; минус 1 пра­вая круг­лая скоб­ка
Б)  левая круг­лая скоб­ка минус 1;0 пра­вая квад­рат­ная скоб­ка
В)  левая круг­лая скоб­ка 1;3 пра­вая квад­рат­ная скоб­ка
Г)  левая квад­рат­ная скоб­ка 3;5 пра­вая круг­лая скоб­ка
Д)  левая квад­рат­ная скоб­ка 0;1 пра­вая круг­лая скоб­ка
14.  
i

На ри­сун­ку зоб­ра­же­но пря­мо­кут­ник ABCD. Точка K ле­жить на сто­роні AD. Визна­чте до­в­жи­ну сто­ро­ни AD, якщо BK = d, \angle AKB = альфа , \angle KCD = бета .

А) d левая круг­лая скоб­ка синус альфа плюс ко­си­нус альфа тан­генс бета пра­вая круг­лая скоб­ка
Б) d левая круг­лая скоб­ка ко­си­нус альфа плюс синус альфа тан­генс бета пра­вая круг­лая скоб­ка
В) d левая круг­лая скоб­ка синус альфа плюс дробь: чис­ли­тель: ко­си­нус альфа , зна­ме­на­тель: тан­генс бета конец дроби пра­вая круг­лая скоб­ка
Г) d левая круг­лая скоб­ка ко­си­нус альфа плюс дробь: чис­ли­тель: синус альфа , зна­ме­на­тель: тан­генс бета конец дроби пра­вая круг­лая скоб­ка
Д) d левая круг­лая скоб­ка ко­си­нус альфа плюс синус альфа синус бета пра­вая круг­лая скоб­ка
15.  
i

На ма­люн­ку зоб­ра­же­но графік функції y = F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка — однією з пер­шо­ряд­них функції f(x), визна­че­ної на інтер­валі (−3; 5). Знайдіть кількість розв'язків рівнян­ня f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =0 на відрізку [−2; 4].

А) 6
Б) 7
В) 8
Г) 9
Д) 10
16.  
i

До кож­но­го по­чат­ку ре­чен­ня (1—3) доберіть його закінчен­ня (А—Д) так, щоб утво­ри­ло­ся пра­виль­не твер­джен­ня.

 

По­ча­то­кре­чен­ня

1.    Пряма у=4,5x

2.    Пряма y= минус 4

3.    Пряма y=2x плюс 4

Закінчен­няре­чен­ня

А є па­ра­лель­ною прямій y=2x

Б    не має спільних точок з графіком функції y=x в квад­ра­те минус 1

В    пе­ре­ти­нає графік функції y=3 в сте­пе­ни x з абс­ци­сою x_0=2

Г є па­ра­лель­ною осі y

Д є бісек­три­сою І і III ко­ор­ди­нат­них чвер­тей.

А
Б
В
Г
Д

1

2

3
17.  
i

Уста­новіть відповідність між ви­ра­зом (1–3) та проміжком (А–Д), якому на­ле­жить його зна­чен­ня.

Вираз

1 минус 3,6 плюс ло­га­рифм по ос­но­ва­нию 2 16

2 ко­рень из 8 минус 1

3 дробь: чис­ли­тель: ло­га­рифм по ос­но­ва­нию 3 81 минус | минус 4|, зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 26 конец ар­гу­мен­та конец дроби

Промiжок

А левая круг­лая скоб­ка 0; 1 пра­вая круг­лая скоб­ка

Б левая круг­лая скоб­ка 1; 2 пра­вая квад­рат­ная скоб­ка

В левая круг­лая скоб­ка 2; 3 пра­вая круг­лая скоб­ка

Г левая круг­лая скоб­ка минус 1; 0 пра­вая квад­рат­ная скоб­ка

Д левая квад­рат­ная скоб­ка 3; 4 пра­вая круг­лая скоб­ка

А
Б
В
Г
Д

1

2

3
18.  
i

У пря­мо­кут­но­му три­кут­ни­ку ACB  \angle C = 90 гра­ду­сов,  \angle B = 24 гра­ду­сов. На про­до­в­женні ка­те­та AC вибра­но точку K так, що AK  =  KB (див. ри­су­нок). Точка O  — центр кола, опи­са­но­го нав­ко­ло три­кут­ни­ка ACB. Уз­годь­те кут (1–3) із його гра­дус­ною мірою (А–Д).

 

КУТ

1)   \angle BAC

2)   \angle KBC

3)   \angle OKB

ГРА­ДУС­НАЯ МIРА КУТА

А)  24°

Б)  34°

В)  42°

Г)  66°

Д)  72°

 

А
Б
В
Г
Д

1

2

3
19.  
i

Гео­мет­рич­на про­гресія за­да­на умо­вою  b_n =160 умно­жить на 3 в сте­пе­ни n . Знайдіть суму пер­ших її 4 членів.

 

Відповідь: ,.

20.  
i

Скільки всьо­го різних п'яти­циф­ро­вих чисел можна утво­ри­ти з цифр 0, 2, 4, 6, 8 (у чис­лах цифри не по­винні по­вто­рю­ва­ти­ся)?

 

Відповідь: ,.

21.  
i

Даны век­то­ры \veca = левая круг­лая скоб­ка 1; 2 пра­вая круг­лая скоб­ка , \vecb = левая круг­лая скоб­ка минус 3; 6 пра­вая круг­лая скоб­ка и \vecc = левая круг­лая скоб­ка 4; минус 2 пра­вая круг­лая скоб­ка . Най­ди­те длину век­то­ра \veca минус \vecb плюс \vecc.

 

Відповідь: ,.

22.  
i

Визна­чте най­мен­ше зна­чен­ня а, за якого має корені рівнян­ня  синус левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка = a в квад­ра­те минус 7a плюс 11.

 

Відповідь: ,.