Каталог заданий.
Многокутники
Версия для печати и копирования в MS Word
1

З точки А до кола про­ве­дені до­тичні AB і АС і січна AM, що про­хо­дить через центр кола Про. Крап­ки В, З, M ле­жать на колі (див. мал.). Знайдіть ве­ли­чи­ну кута AOB, якщо  \angle CAO = 25 гра­ду­сов.



2
Тип 5 № 501
i

На ма­люн­ку зоб­ра­же­но три­кут­ник ABC, у якому ∠ ACB = 38°, ∠ AMN = 109°. Ви­ко­ри­сто­ву­ю­чи дані ма­люн­ка, знайдіть гра­дус­ну міру кута BAC.



3
Тип 5 № 510
i

На ма­люн­ку зоб­ра­же­но три­кут­ник ABC, у якому ∠ ACB = 32°, ∠ AMN = 107°. Ви­ко­ри­сто­ву­ю­чи дані ма­люн­ка, знайдіть гра­дус­ну міру кута BAC.



4
Тип 5 № 511
i

На ма­люн­ку зоб­ра­же­но три­кут­ник ABC, у якому ∠ ACB = 41°, ∠ AMN = 107°. Ви­ко­ри­сто­ву­ю­чи дані ма­люн­ка, знайдіть гра­дус­ну міру кута BAC.



5
Тип 5 № 512
i

На ма­люн­ку зоб­ра­же­но три­кут­ник ABC, у якому ∠ ACB = 35°, ∠ AMN = 107°. Ви­ко­ри­сто­ву­ю­чи дані ма­люн­ка, знайдіть гра­дус­ну міру кута BAC.



6
Тип 5 № 513
i

На ма­люн­ку зоб­ра­же­но три­кут­ник ABC, у якому ∠ ACB = 37°, ∠ AMN = 107°. Ви­ко­ри­сто­ву­ю­чи дані ма­люн­ка, знайдіть гра­дус­ну міру кута BAC.



7
Тип 5 № 520
i

Три­кут­ник ABC - рівно­бед­ре­ний з ос­но­вою AB. Ви­ко­ри­сто­ву­ю­чи дані ма­люн­ка, знайдіть гра­дус­ну міру кута BAC три­кут­ни­ка ABC.



8
Тип 5 № 521
i

Три­кут­ник ABC - рівно­бед­ре­ний з ос­но­вою BC. Ви­ко­ри­сто­ву­ю­чи дані ма­люн­ка, знайдіть гра­дус­ну міру кута BCA три­кут­ни­ка ABC.



9
Тип 5 № 1419
i

Вер­ши­на В па­ра­ле­ло­гра­ма АВСD ле­жить на прямій МС (див. ри­су­нок). Визна­чте гра­дус­ну міру кута СDА, якщо \angleMBA = 25 гра­ду­сов .



10
Тип 5 № 1792
i

На ри­сун­ку зоб­ра­же­но рівно­бед­ре­ний три­кут­ник ABC  левая круг­лая скоб­ка A B=B C пра­вая круг­лая скоб­ка . Визна­чте гра­дус­ну міру кута BAC, якщо \angle B=40 в сте­пе­ни левая круг­лая скоб­ка \circ пра­вая круг­лая скоб­ка .



11
Тип 5 № 1793
i

На ри­сун­ку зоб­ра­же­но пря­мо­кут­ний три­кут­ник з ка­те­та­ми a і b, гіпо­те­ну­зою c та го­ст­рим кутом α. Укажіть пра­виль­ну рівність.



12
Тип 5 № 1794
i

На діаго­налі AC квад­ра­та ABCD за­да­но точку, відстань від якої до сторін AB і BC дорівнюе 2 cм і 6 см відповідно. Визна­чте пе­ри­метр квад­ра­та ABCD.



13
Тип 5 № 1795
i

Катет CB і riпо­те­ну­за AB пря­мо­кут­но­го три­кут­ни­ка ABC ле­жать на пря­мих, що пе­ре­ти­на­ють­ся під кутом 55° (див. ри­су­нок). Визна­чте гра­дус­ну міру \angle C A B.



14
Тип 5 № 1796
i

Якому зна­чен­ню серед на­ве­де­них може дорівню­ва­ти до­в­жи­на сто­ро­ни АС три­кут­ни­ка АВС, якщо АВ = 3 см, ВС = 10 см?



15
Тип 5 № 1797
i

Визна­чте гра­дус­ну міру кута B три­кут­ни­ка ABC, якщо  \angle A плюс \angle C=70 гра­ду­сов.



16
Тип 5 № 1798
i

До­в­жи­на сто­ро­ни AB па­ра­ле­ло­гра­ма ABCD дорівнює 10 см, а його пе­ри­метр — 60 см. Визна­чте до­в­жи­ну сто­ро­ни BC.



17
Тип 5 № 1799
i

На сто­ро­нах AB та AC три­кут­ни­ка ABC за­да­но точки K i M відповідно, KM \parallel BC (див. ри­су­нок). Визна­чте до­в­жи­ну відрізка KM, якщо AK = 6 см, KB = 2 см, BC = 10 см.



18
Тип 5 № 1800
i

На відрізку AB вибра­но точку М так, що до­в­жи­на відрізка АМ утричі більша за до­в­жи­ну MB. Визна­чте до­в­жи­ну відрізка AB, якщо MB=12 см.



19
Тип 5 № 1804
i

Рівно­сто­ронній три­кут­ник ABC та пряма КМ, що про­хо­дить через точку B, ле­жать в одній пло­щині (див. ри­су­нок). Визна­чте гра­дус­ну міру кута KBA, якщо а \angle CBM= 85 гра­ду­сов .



20
Тип 5 № 1805
i

Бісек­три­са кута A пря­мо­кут­ни­ка ABCD пе­ре­ти­нає сто­ро­ну BC i діаго­наль BD в точ­ках K i P відповідно (див. ри­су­нок). Визна­чте гра­дус­ну міру кута BPK, якщо  \angle BDA=30 гра­ду­сов.



21
Тип 5 № 1806
i

На ри­сун­ку зоб­ра­же­но квад­рат ABCD. Точки K та M — се­ре­ди­ни сторін АВ та CD відповідно. Визна­чте пе­ри­метр чо­ти­ри­кут­ни­ка AKMD, якщо пе­ри­метр за­да­но­го квад­ра­та дорівнює 72 см.



22
Тип 5 № 1807
i

До­в­жи­ни сторін АВ та ВС пря­мо­кут­ни­ка АВСD відно­ся­ть­ся як 2:5, а його пе­ри­метр дорівнює 28 см. Визна­чте до­в­жи­ну більшої сто­ро­ни цього пря­мо­кут­ни­ка.



23
Тип 5 № 1808
i

У рівно­бед­ре­но­му три­кут­ни­ку ABC з ос­но­вою AC \angle B = 40 в сте­пе­ни circ. Визна­чте гра­дус­ну міру кута А.



24
Тип 5 № 1809
i

Сума трьох кутів па­ра­ле­ло­гра­ма дорівнює 280°. Визна­чте гра­дус­ну міру більшо­го кута цього па­ра­ле­ло­гра­ма.



25
Тип 5 № 1810
i

На ри­сун­ку зоб­ра­же­но тра­пецію ABCD. Визна­чте гра­дус­ну міру кута BCD, якщо \angle ADB=35 гра­ду­сов, \angle BDC= 20°.



26
Тип 5 № 1811
i

На ри­сун­ку зоб­ра­же­но па­ра­ле­ло­грам ABCD, точка В ле­жить на прямій МС. Визна­чте гра­дус­ну міру кута CDA, якщо \angleMBA = 25 гра­ду­сов.



27
Тип 5 № 1812
i

На ма­люн­ку зоб­ра­же­но три­кут­ник ABC, у якому ∠ ACB = 38°, ∠ AMN = 109°. Ви­ко­ри­сто­ву­ю­чи дані ма­люн­ка, знайдіть гра­дус­ну міру кута BAC.



28
Тип 5 № 1813
i

На ма­люн­ку зоб­ра­же­но три­кут­ник ABC, у якому ∠ ACB = 32°, ∠ AMN = 107°. Ви­ко­ри­сто­ву­ю­чи дані ма­люн­ка, знайдіть гра­дус­ну міру кута BAC.



29
Тип 5 № 1814
i

На ма­люн­ку зоб­ра­же­но три­кут­ник ABC, у якому ∠ ACB = 41°, ∠ AMN = 107°. Ви­ко­ри­сто­ву­ю­чи дані ма­люн­ка, знайдіть гра­дус­ну міру кута BAC.



30
Тип 5 № 1815
i

На ма­люн­ку зоб­ра­же­но три­кут­ник ABC, у якому ∠ ACB = 35°, ∠ AMN = 107°. Ви­ко­ри­сто­ву­ю­чи дані ма­люн­ка, знайдіть гра­дус­ну міру кута BAC.



31
Тип 5 № 1816
i

На ма­люн­ку зоб­ра­же­но три­кут­ник ABC, у якому ∠ ACB = 37°, ∠ AMN = 107°. Ви­ко­ри­сто­ву­ю­чи дані ма­люн­ка, знайдіть гра­дус­ну міру кута BAC.



32
Тип 5 № 1817
i

Три­кут­ник ABC - рівно­бед­ре­ний з ос­но­вою AB. Ви­ко­ри­сто­ву­ю­чи дані ма­люн­ка, знайдіть гра­дус­ну міру кута BAC три­кут­ни­ка ABC.



33
Тип 5 № 1818
i

Три­кут­ник ABC - рівно­бед­ре­ний з ос­но­вою BC. Ви­ко­ри­сто­ву­ю­чи дані ма­люн­ка, знайдіть гра­дус­ну міру кута BCA три­кут­ни­ка ABC.



34
Тип 5 № 2321
i

У пря­мо­кут­но­му три­кут­ни­ку сума двох кутів дорівнює 115°. Визна­чте гра­дус­ну міру най­мен­шо­го кута цього три­кут­ни­ка.



35
Тип 5 № 2656
i

Зовнішній кут при вер­шині A три­кут­ни­ка ABC дорівнює 100°, ∠C  =  20° (див. ри­су­нок). Визна­чте гра­дус­ну міру кута B.


Завершить работу, свериться с ответами, увидеть решения.