Заголовок:
Комментарий:
Версия для копирования в MS Word
PDF-версии: горизонтальная · вертикальная · крупный шрифт · с большим полем
СКЛАДУ НМТ — математика
Вариант № 7853
1.  
i

Площа зе­мель се­лянсь­ко­го гос­по­дар­ства, відве­де­на під по­сад­ку сільсь­ко­гос­по­дарсь­ких куль­тур, ста­но­вить 24 га та роз­поділена між зер­но­ви­ми та ово­че­ви­ми куль­ту­ра­ми щодо 5:3. Скільки гек­тарів зай­ма­ють ово­чеві куль­ту­ри?

А) 8
Б) 7
В) 9
Г) 6
Д) 10
2.  
i

Се­реднє ариф­ме­тич­не п'яти чисел дорівнює 300. Одне з цих чисел дорівнює 500. Знайдіть се­реднє ариф­ме­тич­не чо­ти­рьох чисел, що за­ли­ши­ли­ся.

А) 300
Б) 250
В) 275
Г) 325
Д) 200
3.  
i

Що є осьо­вим пе­ре­ти­ном циліндра?

А) квад­рат
Б) відрізок
В) пря­мо­кут­ник
Г) тра­пецiя
Д) коло
4.  
i

Най­ди­те зна­че­ние вы­ра­же­ния  дробь: чис­ли­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 720 конец ар­гу­мен­та умно­жить на ко­рень из: на­ча­ло ар­гу­мен­та: 15 конец ар­гу­мен­та , зна­ме­на­тель: ко­рень из: на­ча­ло ар­гу­мен­та: 600 конец ар­гу­мен­та конец дроби . В от­ве­те ука­жи­те номер пра­виль­но­го ва­ри­ан­та.

А) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 6 конец ар­гу­мен­та
Б) 6
В) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 2 конец ар­гу­мен­та
Г) 3 ко­рень из: на­ча­ло ар­гу­мен­та: 10 конец ар­гу­мен­та
Д) 3
5.  
i

З точки А до кола про­ве­дені до­тичні AB і АС і січна AM, що про­хо­дить через центр кола Про. Крап­ки В, З, M ле­жать на колі (див. мал.). Знайдіть ве­ли­чи­ну кута AOB, якщо  \angle CAO = 25 гра­ду­сов.

А) 25°
Б) 45°
В) 60°
Г) 65°
Д) 75°
6.  
i

Розв’яжіть рівнян­ня  дробь: чис­ли­тель: 5x плюс 4, зна­ме­на­тель: 2 конец дроби плюс 3= дробь: чис­ли­тель: 9x, зна­ме­на­тель: 4 конец дроби .

А) −24
Б) −20
В) 16
Г) −10
Д) −21
7.  
i

Знайдіть відстань від точки A з ко­ор­ди­на­та­ми (6; 8) до по­чат­ку ко­ор­ди­нат.

А) 6
Б) 10
В) 8
Г) 0
Д) 5
8.  
i

Спростіть вираз  дробь: чис­ли­тель: x в квад­ра­те минус 20x плюс 100, зна­ме­на­тель: x в квад­ра­те минус 10x конец дроби : дробь: чис­ли­тель: x в квад­ра­те минус 100, зна­ме­на­тель: x в кубе конец дроби .

А)  дробь: чис­ли­тель: x в квад­ра­те , зна­ме­на­тель: x минус 10 конец дроби
Б)  дробь: чис­ли­тель: x минус 10, зна­ме­на­тель: x плюс 10 конец дроби
В)  дробь: чис­ли­тель: левая круг­лая скоб­ка x минус 10 пра­вая круг­лая скоб­ка в квад­ра­те , зна­ме­на­тель: x в сте­пе­ни 4 конец дроби
Г)  дробь: чис­ли­тель: x в квад­ра­те , зна­ме­на­тель: x плюс 10 конец дроби
Д)  дробь: чис­ли­тель: x в квад­ра­те , зна­ме­на­тель: 10 минус x конец дроби
9.  
i

Які з на­ве­де­них твер­джень є пра­виль­ни­ми?

I. Якщо радіуси двох кіл дорівню­ють 3 і 5, а відстань між їх цен­тра­ми дорівнює 1, то ці кола пе­ре­ти­на­ють­ся.

II. Впи­сані кути, що спи­ра­ють­ся на ту саму хорду кола, рівні.

III. Нав­ко­ло будь-якого три­кут­ни­ка можна опи­са­ти не більше од­но­го кола.

А) Тільки I
Б) Тільки II
В) Тільки III
Г) I та II
Д) II та III
Е) I та III
10.  
i

x плюс 2 левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка =

А) 3x−4
Б) 3x+4
В) 3x
Г) 3x−2
Д) 2x−2
11.  
i

Розв'яжіть си­сте­му нерівно­стей  си­сте­ма вы­ра­же­ний 4x минус 7 боль­ше или равно 2x плюс 1,x боль­ше или равно минус 3. конец си­сте­мы .

А)  левая квад­рат­ная скоб­ка минус 1; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
Б) [−3; 4]
В) ∅
Г)  левая квад­рат­ная скоб­ка минус 3; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
Д)  левая квад­рат­ная скоб­ка 4; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка
12.  
i

Площа бічної по­верхні циліндра дорівнює 24π, а до­в­жи­на кола його ос­но­ви — 4π. Визна­чте ви­со­ту цього циліндра.

А) 2
Б) 3
В) 4
Г) 6
Д) 8
13.  
i

Знайдіть корінь рівнян­ня: 9 в сте­пе­ни левая круг­лая скоб­ка минус 5 плюс x пра­вая круг­лая скоб­ка =729.

А)  левая квад­рат­ная скоб­ка 8;11 пра­вая круг­лая скоб­ка
Б)  левая круг­лая скоб­ка 4;8 пра­вая круг­лая скоб­ка
В)  левая круг­лая скоб­ка 11;12 пра­вая квад­рат­ная скоб­ка
Г)  левая круг­лая скоб­ка 1;3
Д)  левая круг­лая скоб­ка 2;6 пра­вая круг­лая скоб­ка
14.  
i

Площа па­ра­ле­ло­гра­ма ABCD дорівнює 132. Точка E — се­ре­ди­на сто­ро­ни AB . Знайдіть площу три­кут­ни­ка CBE .

А) 13
Б) 33
В) 25
Г) 16
Д) 41
15.  
i

На ма­люн­ку зоб­ра­же­но графік функції y = F левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка — однією з пер­шо­ряд­них функції f(x), визна­че­ної на інтер­валі (−3; 5). Знайдіть кількість розв'язків рівнян­ня f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка =0 на відрізку [−2; 4].

А) 6
Б) 7
В) 8
Г) 9
Д) 10
16.  
i

До кож­но­го по­чат­ку ре­чен­ня (1—3) доберіть його закінчен­ня (А—Д) так, щоб утво­ри­ло­ся пра­виль­не твер­джен­ня.

 

По­ча­то­кре­чен­ня

1.    Пряма у=4,5x

2.    Пряма y= минус 4

3.    Пряма y=2x плюс 4

Закінчен­няре­чен­ня

А є па­ра­лель­ною прямій y=2x

Б    не має спільних точок з графіком функції y=x в квад­ра­те минус 1

В    пе­ре­ти­нає графік функції y=3 в сте­пе­ни x з абс­ци­сою x_0=2

Г є па­ра­лель­ною осі y

Д є бісек­три­сою І і III ко­ор­ди­нат­них чвер­тей.

А
Б
В
Г
Д

1

2

3
17.  
i

Уста­новіть відповідність між чис­ло­вим ви­ра­зом (1—3) та його зна­чен­ням (А—Д).

 

По­ча­ток ре­чен­ня

1.   2 в сте­пе­ни левая круг­лая скоб­ка минус 8 пра­вая круг­лая скоб­ка :2 в сте­пе­ни 0

2.    минус 2 в сте­пе­ни левая круг­лая скоб­ка минус 11 пра­вая круг­лая скоб­ка умно­жить на 8

3.   20 в сте­пе­ни 4 : левая круг­лая скоб­ка минус 5 пра­вая круг­лая скоб­ка в сте­пе­ни 4

Зна­чен­ня чис­ло­во­го ви­ра­зу

А    256

Б    −256

В     минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 256 конец дроби

Г     дробь: чис­ли­тель: 1, зна­ме­на­тель: 256 конец дроби

Д    32

А
Б
В
Г
Д

1

2

3
18.  
i

Уста­новіть відповідність між по­чат­ком ре­чен­ня (1–3) і його закінчен­ням (А−Д) так, щоб утво­ри­ло­ся пра­виль­не твер­джен­ня.

Рис. 1

Рис. 2

Рис. 3

Рис. 4

Рис. 5

По­ча­ток ре­чен­ня

1.    Три­кут­ник, у якого цен­три впи­са­но­го й опи­са­но­го кіл збіга­ють­ся, зоб­ра­же­но на

2.    Три­кут­ник, один із внутрішніх кутів якого дорівнює 30° зоб­ра­же­но на

3.    Три­кут­ник, у якого радіус опи­са­но­го кола більший за 5 см, зоб­ра­же­но на

Закінчен­ня ре­чен­ня

А    рис. 1.

Б    рис. 2.

В    рис. 3.

Г    рис. 4.

Д    рис. 5.

А
Б
В
Г
Д

1

2

3
19.  
i

Каж­дый день боль­ной за­ра­жа­ет че­ты­рех че­ло­век, каж­дый из ко­то­рых, на­чи­ная со сле­ду­ю­ще­го дня, каж­дый день также за­ра­жа­ет новых че­ты­рех и так далее. Бо­лезнь длит­ся 14 дней. В пер­вый день ме­ся­ца в город N при­е­хал за­бо­лев­ший граж­да­нин К, и в это же день он за­ра­зил че­ты­рех че­ло­век. В какой день ста­нет 3125 за­бо­лев­ших? (В от­ве­те ука­жи­те толь­ко число.)

Відповідь: ,.

20.  
i

Скільки всьо­го різних дво­циф­ро­вих чисел можна утво­ри­ти з цифр 2, 6, 7 і 9 так, щоб у кож­но­му числі всі цифри не по­вто­рю­ва­ли­ся?

Відповідь: ,.

21.  
i

Даны век­то­ры \veca = левая круг­лая скоб­ка 1; 2 пра­вая круг­лая скоб­ка , \vecb = левая круг­лая скоб­ка минус 3; 6 пра­вая круг­лая скоб­ка и \vecc = левая круг­лая скоб­ка 4; минус 2 пра­вая круг­лая скоб­ка . Най­ди­те длину век­то­ра \veca минус \vecb плюс \vecc.

 

Відповідь: ,.

22.  
i

Визна­чте най­мен­ше зна­чен­ня а, за якого має корені рівнян­ня  синус левая круг­лая скоб­ка x плюс дробь: чис­ли­тель: Пи , зна­ме­на­тель: 4 конец дроби пра­вая круг­лая скоб­ка = a в квад­ра­те минус 7a плюс 11.

 

Відповідь: ,.